skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Songwei Ge, Shlok Mishra"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Unsupervised learning has recently made exceptional progress because of the development of more effective contrastive learning methods. However, CNNs are prone to depend on low-level features that humans deem non-semantic. This dependency has been conjectured to induce a lack of robustness to image perturbations or domain shift. In this paper, we show that by generating carefully designed negative samples, contrastive learning can learn more robust representations with less dependence on such features. Contrastive learning utilizes positive pairs which preserve semantic information while perturbing superficial features in the training images. Similarly, we propose to generate negative samples in a reversed way, where only the superfluous instead of the semantic features are preserved. We develop two methods, texture-based and patch-based augmentations, to generate negative samples. These samples achieve better generalization, especially under out-of-domain settings. We also analyze our method and the generated texture-based samples, showing that texture features are indispensable in classifying particular ImageNet classes and especially finer classes. We also show that the model bias between texture and shape features favors them differently under different test settings. 
    more » « less